

FOCUS GROUP DISCUSSION:

Electric Vehicle Drivers

September 13, 2018 12:30-1:30 PM

Agenda

- Welcome
- Introductions
- Discussion
- Preliminary EV Charger Placement Optimization Study Findings
- Closing Remarks

Problem Statement

- Find the optimal infrastructure investment to support electric vehicle travel:
 - Where to deploy charging stations?
 - How many charging outlets must be built at each station?
- The modeling framework considers:
 - EV trip feasibility
 - Minimizing charging station investment cost
 - Minimizing travelers delay including:
 - Charging time
 - Queuing delay time
 - Detour time

This study focuses on investing in DC fast chargers for long distance (intercity) trips of EV users.

Reference Road Network

 Major cities and interstate highways

The focus is on intercity travel us.

 Travel demand around major crystal Falls cities is aggregated to the city center

- Travel demand within the cities were excluded
- The distance between candidate points is less than 50 miles
- Candidate points may or may
 not be selected for building
 charging stations

Scenario 1: Rapid market growth, 50kw charger w/ 70 kWh Battery

Scenario 7: Rapid market growth, 150kw charger w/ 100kWh Battery

Thank you.

- Contacts:
 - Robert Jackson <u>JacksonR20@Michigan.gov</u>
 - Joy Wang
 WangJ3@Michigan.gov

